粤港澳大湾区高温灾害韧性评估与提升策略

High-Temperature Disaster Resilience Evaluation and Promotion in Guangdong-Hong Kong-Macao Greater Bay Area

陈 天
天津大学建筑学院 教授,博士生导师 城市空间及城市设计研究所所长

刘君男
天津大学建筑学院 博士研究生

摘要: 全球气候变化导致极端高温事件频发,严重制约城市的健康安全与可持续发展。韧性概念是应对突发性与不确定性气候灾害的重要理论和策略,但在高温灾害领域鲜有涉及。以粤港澳大湾区为例,首先,构建包括“物理、自然、经济、制度、社会”5个维度、“灾前、灾时、灾后”3个阶段的高温灾害韧性概念框架与评估体系,为研究提供理论基础。其次,利用WRF、ArcGIS、层次分析法等对多源数据集进行时空模拟与运算,绘制准备性、抵抗性、恢复性、适应性与转化性以及高温灾害韧性等级区划图,识别大湾区高温灾害韧性的时空分异特征。最后,提出韧性提升策略,为大湾区及其他高温风险地区韧性研究与建设行动提供借鉴。

Abstract: Global climate change leads to frequent extreme heat events, which restrict cities' sustainable development. The concept of resilience is an important theory and strategy to deal with climate disasters, but it is rarely involved in the field of high-temperature disasters. Taking the Guangdong-Hong Kong-Macao Greater Bay Area as an example, this paper first constructs a conceptual framework and assessment system from three stages of pre-disaster, disaster time and post-disaster, which include physical, natural, economic, institutional and social dimensions. Secondly, maps of preparedness, resistance, recovery, adaptability and transformation, as well as high-temperature disaster resilience are drawn based on multi-source data sets using WRF, ArcGIS and AHP. Finally, the resilience improvement strategies are proposed to provide references for resilience research in the Greater Bay Area and other high-temperature risk areas.

关键词:高温灾害;WRF;韧性评估;粤港澳大湾区

Keyword: high-temperature disaster; WRF; resilience evaluation; Guangdong-Hong Kong-Macao Greater Bay Area

中图分类号:TU984

文献标识码: A

资金资助

澳门科学技术发展基金项目 澳门填海造地高密度城市空间环境评价与优化研究 0039/2020/AFJ

YAMAGATA Y, SHARIFI A. Resilience-oriented urban planning[J]. Lecture Notes in Energy, 2018(65): 3-27.
李亚,翟国方. 我国城市灾害韧性评估及其提升策略研究[J]. 规划师,2017,33(8):5-11.
LI Ya, ZHAI Guofang. China's urban disaster resilience evaluation and promotion[J]. Planners, 2017, 33(8): 5-11.
WOODRUFF S C, MEEROW S, STULTS M, et al. Adaptation to resilience planning: alternative pathways to prepare for climate change[J]. Journal of Planning Education and Research, 2022, 42(1): 64-75.
MOLENAAR A, SONNEVELD N, VERTEGAAL Y, et al. Resilient Rotterdam strategy 2022-2027[EB/OL]. [2022-10-22]. https://www.resilientrotterdam.nl/en/download.
City of New York. OneNYC 2050: building a strong and fair city[EB/OL]. [2022-10-23]. https://onenyc.cityofnewyork.us/strategies/a-livable-climate/#main-content.
LU X, LIAO W, FANG D, et al. Quantification of disaster resilience in civil engineering: a review[J]. Journal of Safety Science and Resilience, 2020, 1(1): 19-30.
SUN S, WANG Z, HU C, et al. Understanding climate hazard patterns and urban adaptation measures in China[J]. Sustainability, 2021, 13(24): 13886.
SENEVIRATNE S I, ZHANG X B, ADNAN M, et al. Weather and climate extreme events in a changing climate[M/OL]//IPCC. Climate change 2021: the physical science basis. [2022-10-15]. https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter_11.pdf.
United Nations, Department of Economic and Social Affairs, Population Division. The world's cities in 2018—data booklet[R]. New York: UN-DESA, 2018.
张颖娴,孙劭,刘远,等. 2021年全球重大天气气候事件及其成因[J]. 气象,2022,48(4):459-469.
ZHANG Yingxian, SUN Shao, LIU Yuan, et al. Global major weather and climate events in 2021 and possible causes[J]. Meteorological Monthly, 2022, 48(4): 459-469.
HOLLING C S. Resilience and stability of ecological systems[J]. Annual Review of Ecology and Systematics, 1973, 4: 1-23.
赵瑞东,方创琳,刘海猛. 城市韧性研究进展与展望[J]. 地理科学进展,2020,39(10):1717-1731.
ZHAO Ruidong, FANG Chuanglin, LIU Haimeng. Progress and prospect of urban resilience research[J]. Progress in Geography, 2020, 39(10): 1717-1731.
CUTTER S L, BARNES L, BERRY M, et al. A place-based model for understanding community resilience to natural disasters[J]. Global Environmental Change, 2008, 18(4): 598-606.
BRUNEAU M, CHANG S E, EGUCHI R T, et al. A framework to quantitatively assess and enhance the seismic resilience of communities[J]. Earthquake Spectra, 2003, 19(4): 733-752.
United Nations Office for Disaster Risk Reduction. Report of the open ended intergovernmental working group on possible measures to improve the treatment of nominations to the Representative List by the Committee, its Subsidiary Body and the Secretariat[R]. New York: United Nations General Assembly, 2016.
MEEROW S, NEWELL J P, STULTS M. Defining urban resilience: a review[J]. Landscape and Urban Planning, 2016, 147: 38-49.
KLEIN R J T, NICHOLLS R J, THOMALLA F. Resilience to natural hazards: how useful is this concept?[J]. Environmental Hazards, 2003, 5(1): 35-45.
BUTSCH C, ETZOLD B, SAKDAPOLRAK P. The megacity resilience framework[M]. Bonn: UNU-EHS, 2009.
The Rockefeller Foundation, ARUP. City resilience framework[R]. 2014.
RUS K, KILAR V, KOREN D. Resilience assessment of complex urban systems to natural disasters: a new literature review[J]. International Journal of Disaster Risk Reduction, 2018, 31: 311-330.
RIBEIRO P J G, GONÇALVES L A P J. Urban resilience: a conceptual framework[J]. Sustainable Cities and Society, 2019, 50: 101625.
TONG P. Characteristics, dimensions and methods of current assessment for urban resilience to climate-related disasters: a systematic review of the literature[J]. International Journal of Disaster Risk Reduction, 2021, 60: 102276.
LU P, STEAD D. Understanding the notion of resilience in spatial planning: a case study of Rotterdam, The Netherlands[J]. Cities, 2013, 35: 200-212.
LESTUZZI P, PODESTÀ S, LUCHINI C, et al. Seismic vulnerability assessment at urban scale for two typical Swiss cities using Risk-UE methodology[J]. Natural Hazards (Dordrecht), 2016, 84(1): 249-269.
KERMANSHAH A, DERRIBLE S. A geographical and multi-criteria vulnerability assessment of transportation networks against extreme earthquakes[J]. Reliability Engineering & System Safety, 2016, 153: 39-49.
KUSUMASTUTI R D, VIVERITA V, HUSODO Z A, et al. Developing a resilience index towards
natural disasters in Indonesia[J]. International Journal of Disaster Risk Reduction, 2014, 10: 327-340.
XU L, YOU H, LI D, et al. Urban green spaces, their spatial pattern, and ecosystem service value: the case of Beijing[J]. Habitat International, 2016, 56: 84-95.
CAVALLARO M, ASPRONE D, LATORA V, et al. Assessment of urban ecosystem resilience through hybrid social-physical complex networks[J]. Computer-Aided Civil and Infrastructure Engineering, 2014, 29(8): 608-625.
李正兆,傅大放,王君娴,等. 应对内涝灾害的城市韧性评估模型及应用[J]. 清华大学学报(自然科学版),2022,62(2):266-276.
LI Zhengzhao, FU Dafang, WANG Junxian, et al. Urban resilience assessment model for waterlogging disasters and its application[J]. Journal of Tsinghua University (Science & Technology), 2022, 62(2): 266-276.
GERNAY T, SELAMET S, TONDINI N, et al. Urban infrastructure resilience to fire disaster: an overview[J]. Procedia Engineering, 2016, 161: 1801-1805.
OUYANG M, DUEÑAS-OSORIO L. Multi-dimensional hurricane resilience assessment of electric power systems[J]. Structural Safety, 2014, 48: 15-24.
付含聪,邓帆,杨欢,等. 基于遥感的长江中下游城市群高温热浪风险评估[J]. 长江流域资源与环境,2020,29(5):1174-1182.
FU Hancong, DENG Fan, YANG Huan, et al. Assessing heat wave risk of urban agglomeration in the middle-lower Yangtze River based on remote sensing[J]. Resources and Environment in the Yangtze Basin, 2020, 29(5): 1174-1182.
HU K, YANG X, ZHONG J, et al. Spatially explicit mapping of heat health risk utilizing environmental and socioeconomic data[J]. Environmental Science and Technology, 2017, 51(3): 1498-1507.
陈恺,唐燕. 城市高温热浪脆弱性空间识别与规划策略应对——以北京中心城区为例[J]. 城市规划,2019,43(12):37-44.
CHEN Kai, TANG Yan. Identification of urban areas vulnerable to heat waves and coping strategies: a case study of Beijing central city[J]. City Planning Review, 2019, 43(12): 37-44.
薛倩,谢苗苗,郭强,等. 地理学视角下城市高温热浪脆弱性评估研究进展[J]. 地理科学进展,2020,39(4):685-694.
XUE Qian, XIE Miaomiao, GUO Qiang, et al. Research progress on urban heat wave vulnerability assessment: a geographical perspective[J]. Progress in Geography, 2020, 39(4): 685-694.
OUYANG M, DUEÑAS-OSORIO L, MIN X. A three-stage resilience analysis framework for urban infrastructure systems[J]. Structural Safety, 2012, 36-37: 23-31.
CIMELLARO G P, REINHORN A M, BRUNEAU M. Framework for analytical quantification of disaster resilience[J]. Engineering Structures, 2010, 32(11): 3639-3649.
ARGYROUDIS S A, MITOULIS S A, HOFER L, et al. Resilience assessment framework for critical infrastructure in a multi-hazard environment: case study on transport assets[J]. Science of the Total Environment, 2020, 714: 136854.
QASIM S, QASIM M, SHRESTHA R P, et al. Community resilience to flood hazards in Khyber Pukhthunkhwa Province of Pakistan[J]. International Journal of Disaster Risk Reduction, 2016, 18: 100-106.
张鑫,王楠,王伟,等. 考虑台风天气的电力系统韧性评估[J]. 电力系统及其自动化学报,2019,31(8):21-26.
ZHANG Xin, WANG Nan, WANG Wei, et al. Resilience assessment on power system under typhoon[J]. Proceedings of the CSU-EPSA, 2019, 31(8): 21-26.
税伟,陈志淳,邓捷铭,等. 耦合适应力的福州市高温脆弱性评估[J]. 地理学报,2017,72(5):830-849.
SHUI Wei, CHEN Zhichun, DENG Jieming, et al. Evaluation of urban high temperature vulnerability of coupling adaptability in Fuzhou, China[J]. Acta Geographica Sinica, 2017, 72(5): 830-849.
黄晓军,祁明月,赵凯旭,等. 高温影响下西安市人口脆弱性评估及其空间分异[J]. 地理研究,2021,40(6):1684-1700.
HUANG Xiaojun, QI Mingyue, ZHAO Kaixu, et al. Assessment of population vulnerability to heat stress and spatial differentiation in Xi'an[J]. Geographical Research, 2021, 40(6): 1684-1700.
李欢欢,张明顺. 北京市高温热浪健康风险评估框架及应用[J]. 环境与健康杂志,2020,37(1):58-65.
LI Huanhuan, ZHANG Mingshun. Framework and application of health risk assessment for heat wave in Beijing[J]. Journal of Environment and Health, 2020, 37(1): 58-65.
黄卓,陈辉,田华. 高温热浪指标研究[J]. 气象,2011,37(3):345-351.
HUANG Zhuo, CHEN Hui, TIAN Hua. Research on the heat wave index[J]. Meteorological Monthly, 2011, 37(3): 345-351.
李卓群,刘星才. 1961—2019年辽宁省高温天气变化特征[J]. 应用生态学报,2021,32(11):4059-4067.
LI Zhuoqun, LIU Xingcai. Variations of high temperature from 1961 to 2019 in Liaoning Province, China[J]. Chinese Journal of Applied Ecology, 2021, 32(11): 4059-4067.
赵懋源,杨永春,王波. 广东省城市韧性水平评价及时空分析[J]. 兰州大学学报(自然科学版),2022,58(3):412-419.
ZHAO Maoyuan, YANG Yongchun, WANG Bo. Evaluation and spatio-temporal analysis of urban resilience in Guangdong Province[J]. Journal of Lanzhou University (Natural Sciences), 2022, 58(3): 412-419.
殷为华. 长三角城市群工业韧性综合评价及其空间演化研究[J]. 学术论坛,2019,42(5):124-132.
YIN Weihua. Comprehensive evaluation and spatialevolution of industrial resilience in Yangtze River Delta urban agglomeration[J]. Academic Forum, 2019, 42(5): 124-132.
CHEW L W, LIU X, LI X, et al. Interaction between heat wave and urban heat island: a case study in a tropical coastal city, Singapore[J]. Atmospheric Research, 2021, 247: 105134.
JAHANGIR M S, MOGHIM S. Assessment of the urban heat island in the city of Tehran using reliability methods[J]. Atmospheric Research, 2019, 225: 144-156.
张含,张小伟,樊高峰. 城市化影响杭州城市热环境的数值模拟研究[J]. 中国环境科学,2021,41(9):4107-4119.
ZHANG Han, ZHANG Xiaowei, FAN Gaofeng. Simulated effect of urbanization on urban thermal environment in Hangzhou[J]. China Environmental Science, 2021, 41(9): 4107-4119.
陈磊,邓欣怡,陈红坤,等. 电力系统韧性评估与提升研究综述[J]. 电力系统保护与控制,2022,50(13):11-22.
CHEN Lei, DENG Xinyi, CHEN Hongkun, et al. Review of the assessment and improvement of power system resilience[J]. Power System Protection and Control, 2022, 50(13): 11-22.
杜敏,刘绚,周元刚. 考虑极端事件下的高比例可再生能源电力系统韧性增强策略[J/OL]. 电力系统自动化:1-11[2022-10-23]. http://kns.cnki.net/kcms/detail/32.1180.TP.20220923.1423.006.html.
DU Min, LIU Xuan, ZHOU Yuan'gang. Considering the resilience enhancement strategy of high proportion renewable energy power system under extreme events[J/OL]. Automation of Electric Power Systems: 1-11[2022-10-23]. http://kns.cnki.net/kcms/detail/32.1180.TP.20220923.1423.006.html.
曾鸣,杨雍琦,向红伟,等. 兼容需求侧资源的“源—网—荷—储”协调优化调度模型[J]. 电力自动化设备,2016,36(2):102-111.
ZENG Ming, YANG Yongqi, XIANG Hongwei, et al. Optimal dispatch model based on coordination between "generation-grid-load-energy storage" and demand-side resource[J]. Electric Power Automation Equipment, 2016, 36(2): 102-111.
DHAR T K, KHIRFAN L. A multi-scale and multi-dimensional framework for enhancing the resilience of urban form to climate change[J]. Urban Climate, 2017, 19: 72-91.
李可欣,李超骕. 多维度视角下城市形态与气候韧性的关联[J]. 城乡规划,2021(3):20-27.
LI Kexin, LI Chaosu. Exploring the linkages of urban form and climate resilience from a multi-dimensional perspective[J]. Urban and Rural Planning, 2021(3): 20-27.
ZHANG X, SONG J, PENG J, et al. Landslides-oriented urban disaster resilience assessment—a case study in Shenzhen, China[J]. Science of the Total Environment, 2019, 661: 95-106.

微信扫一扫
关注“上海城市规划”
公众号